AD=A070 208 WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 1272
LOCAL AND SUPERLINEAR CONVERGENCE OF A CLASS OF VARIABLE METRIC==ETC(U)
APR 79 K RITTER DAA929-75-C-(|02.
UNCLASS IFIED MRC=TSR=1949

[-NIJ
cqllmi/lr']




UGC FILE COPY,

-

e - ™ .

MRC Technical Summary Report #1949

LOCAL AND SUPERLINEAR
CONVERGENCE OF A CLASS OF
VARIABLE METRIC METHODS

Klaus Ritter

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53706

April 1979

(Received February 22, 1979)

Sponsored by

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

77

. Lo
e - NSRRI RE W S

Approved for public release
Distribution unlimited




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

LOCAL AND SUPERLINEAR CONVERGENCE

Y T r LT T

. OF A CLASS OF VARIABLE METRIC METHODS

f Klaus Ritter

Technical Summary Report #1949

April 1979

ABSTRACT

This paper considers a class of variable metric methods for unconstrained

minimization problems. It is shown that with a step size of one each member of

this class converges locally and superlinearly.
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SIGNIFICANCE AND EXPLANATION

M

Many practical problems in operations research may be reduced to minimizing a
function without constraints. Variable metric methods are successfully used in com-
puting a sequence which converges to the minimum of a function. During each iteration
a search direction and a step size are computed. In order to obtain fast convergence
it is necessary that the chosen step size approximates the optimal step size, i.e.,
the step size which minimizes the function along the given search direction. This
may require considerable computational effort. If an approximation to the minimum
is known, however, it is often possible to increase the efficiency of an algorithm
by showing that a step size of one is a sufficiently good approximation to the opti-
mal step size. Such a situation arises, for instance, if as in the method of penalty
functions a sequence of unconstrained problems is solved in order to obtain a solution
to a more complicated optimization problem. In general the minimum of one penalty
function is a good approximation to the minimum of the penalty function used next.

fn this paper it is shown that variable metric methods converge rapidly with

a step size of one 1f a good approximation of the solution is used as starting point.
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LOCAL AND SUPERLINEAR CONVERGENCE
OF A CLASS OF VARIABLE METRIC METHODS

Klaus Ritter

L

1. Introduction

If a variable metric method is used to compute a minimizer 2z of a function F(x) it

simultaneously generates a sequence of points (xj} and a sequence of matrices {H.}. During

with the intent to construct an approximation to

each iteration a correction is added to Hj

the inverse Hessian matrix of F(x).

A large class of such methods has been introduced by Huang [8). A restriction of the Huang

class to update formulas which are of rank two, satisfy the quasi-Newton equation and maintain |

the symmetry of Hj leads to a class of methods proposed by Broyden [1] and Fletcher [6]. 1In

[9) global and superlinear convergence has been established for each member of this subclass

A o - e S

5 without the requirement of an optimal step size. However, in the context of a global conver-

gence theory the Broyden-Fletcher-Goldfarb-Shanno-method (2], (6], [7], [10] appears to be the

only one for which it can be shown that a step size of one is always acceptable after suffi-

dyr"‘: b

e T e

ciently many iterations.

Using a step size of one Broyden, Dennis and Moré [3] have shown that the Broyden-Fletcher-

Goldfarb-shanno-method and the Davidon-Fletcher-Powell-method [4], [5] converge superlinearly to

a minimizer 2z of F(x) provided that the initial point x and the initial matrix H

are
0

sufficiently close to 2z and the inverse Hessian matrix of F(x) at 2z, respectively. It is

the purpose of this paper to extend this result to all members of the Broyden class.

Sponsored by the United States Army under Contract No. DAAG29-75-C=0024.




2. Preliminary results

Let x ¢ E' and let F(x) be a real-valued function. If F(x) is twice differentiable

at a point Xy we denote the gradient and the Hessian matrix of F(x) at Xy by 94

and Gj = G(xj), respectively. A prime is used for the transpose of a vector or a matrix. For

= VF(x,
(x))

any X ¢ e, [[x]] denotes the Euclidean norm of «x.
Throughout this paper we require the following assumption to be satisfied.
Assumption 1
There is a vector 2z such that F(x) 1is twice continuously differentiable in some convex

neighborhood of 2z, VF(z) = 0, G = G(z) 1is positive definite and the Lipschitz condition
(2.1) lex)-c(z) || < v|lx-z]] ,

where L 1s a positive constant, is satisfied for all x in some convex neighborhood of =z.
Clearly the above assumption implies that there are constants 0 < y < n and a convex

neighborhood U(z) such that, for every x ¢ U(z), the inequality (2.1) and the relation

U"Y||2 < y'G(x)y < n”y||2 for all vy « i

hold.

We consider the problem of determining a sequence

(2.2) X, =X, - Si' I » 0udidiinn

which converges to z.
If a variable metric method is used to compute the sequence (2.2), then an (n, n)-matrix

" H is associated with each x and the search direction s

3 ]

is determined by the relation

j

The matrix Hj*l' associated with x1+l' is obtained by adding a rank two matrix to Hj in

such a way that H satisfies the guasi-Newton equation

j+l

"10ldj = pj .

o
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The various variable metric methods differ in the update procedure which is used to com

pute Nvl from N'. A large Class of such methods has been studied by Hroyden (1), Fletoher

tel, and Huang [8). In the tollowing we will consider a subclass of these upddate procedures

15 symmetvic all subsequent matrices N

which has the property that if the initial mate ix Mk\ i

will be symmetric., It has been shown in {9) that the update formulas that correspond to this

subclass can be written in the form

8, (¢ .P +d'H d )Qﬁ‘\"N o
S F AR H L e s e <

4 s (R . S N 2 | P~}‘I
+l A'p. i'p N4,
@ ’ d 18 Bk A LN PUH TR 33
s P.AtH 0 A p! Q. d4d'n
' SRR S B, W il SEN PG, I . i N

R.d'p s d'H.d. 2 PR A'H.4,
1 ﬂ\‘ ';*m:‘ ’N‘d‘ sli'; ‘06’,1‘?!) 3

el e S

»
where z%l and  ® are arbitrary farameters with 6; + 8. > 0,

8 &

T™wo well-known members of this class, namely the BFGS - Method (RBroyden (2}, Fletcher (o),

Goldfarb (7], shanno (101} and the DFPF = Method (bavidon (4], Fletcher, Powell [S]) can be obh-

L 3 respectively,  The choice :il . «f

B e I

tained by choosing :%1 «li By =G and B mQ, 8 =1,

N

results in the rvank one update tormula

ok

2. ~H. .. ) 1=4iH,)
PRESE B R 25 e Wb B |
+1 B B ) i
) ) Pymdiyiay

However this method 1s known to be numer teally unstable. 1t will be excluded in the following.

1t M‘ 1S posative definite it has been shown in [9] that N‘ can be written in the form

PP Q.q! nopop!
) ! e Y i
\~.4) "1 % “’.'\J",;\L' 3 h“\l - \ d. "J ‘
: b )3 =3 13" 1%
whete
H‘d‘, 1
Vot aegt % e
{ “\f! LIS s B 1

- Y




1) w

« upnn(qj.q }  such that v;p =0, w!q. >0 and q, * H.w has norm one,

1+1 i 1) ) 1)

111)  the vectors d ""'dnﬁ are orthogonal to pi and q) and are such that

V)

d;)")dkj =0, i,k=3,...4n, ¥k ,

and

Then every H

1+l

P - R A4 1= 1,...,n, has norm one.
determined by (2.3) has the form (see [9))

I8 S uu' R T
n,, - vk s . b
K3 ‘n 0 & '
3 ds}‘ A w‘us {ud Sjpi)

'

where the vector u 1s uniquely determined by the conditions

(4.6)

The parameter

cisely,

(2.7)

with

(2.8)

1

uy ¢ lpnn(qj,p1). ”u‘|| = §; diu’ =« 0, wiu, > 0

u‘ depends on the particular numbers ﬂl and B used in (2.3). More pre-

d‘q.
), = . gied p

(dip.)
B dip.+
1933 % qupl
Y = " " .
R B 4
This shows that if Hj is positive definite and
ap.-a, P
0 > \ ' < b
d,v, " 0, i.e., LA quj

It=51

then H 18 positive definite if and only if y1 x O«

1+l
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3. Syperlinear convergence

Throughout this section we will assume that Assumption 1 1s satisfied and that the sequence

(x]) 1s generated by the following algorithm.

Algorithm

Step 0:  Choose numbers g R, with ﬁl + g, # 0, avector x , and a symmetric positive

s 0

definite matrix “0' Compute qn - Vr(xu). It g = 0, stop; otherwise set ) = 0 and Qo to

QO

Step 1.
Step 1:  set

and  x - X, =8

il

e e b

Compute qj = VF(x 1f = 0, satop; otherwise go to Step 2.

+1 jol)' qjvl

Step 2: Compute H by (2.3). Replace j with j+1 and go to Step 1.

1+l

We will show that for every choice of 8 and R

1 , Wwith 61 + 8, # 0 there are numbers

§ = §(B .8, and 8 = SR, 4B

»
-

such that

a1l

[ A

§ and ”xo~=” < §e

imply that every H1 is a well-defined positive definite matrix and that the algorithm either
terminates after a finite number of iterations Or generates a sequence {xi' which converges
superlinearly to =z,

The convergence proof is based on an estimate for the trace of the matyix

/2 -1/ -1/2
(3.1 % c*? 4 "V g
i i
1/2 4 «1 /3 1/2 =1
where G is the square root of the posttive definite matvix o, O = (G ) and

B, = n; . It follows immediately from (2.4) and (2.5) that

).9.9° w.ow! n d,.d!
e b Lo G b IS R \
¥Ry Wyl 44y,

-
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| 4.4’ w.ow! n d,.d!

i (3.3) B, s da i dd, 7 S22

1 j+1 alp w, wiu, . P
33 3 ) ) A=3 Tayiy

Observe that by (2.6)

% qu’ jij 3 4

Therefore, we have ”qj+ajpjl|w;u. = w!q, and by (2.7)

] s 3
u.u! (q.,+a.p.) (q.+a_.p.)"'
(3.4) "’"‘?—l’*j 2 JJ' s Jii b
w.u,. AL 3N
1-Vgis ¥y
w.w' w.w'
; (3.5) Realihie e S G e
E . w.u, . wig.
i it 5 L B

Let ¢ denote the trace of the matrix (3.1). Since the trace of a matrix is equal to the

b}

sum of its diagonal elements it follows from (2.4), (2.5) and (3.2) through (3.5) that we have

f the following relation between wj+1 and wj.

; pEGp.+o%q!G-1g. piGp.+d!G_1d.

(3.6) V. = . - by s B [mtn I ke (PR Ll L S
+1 p.9iP. AY Pl
- i i o iP5
'i q'Gq +w'G-1w yz(q +a.p.)'G(g.+a.p )+w'G-1w
‘ e v T e T T s o i i ol Nl
w'q. ; w'qg. 3
| %3 L 1%
|
(ptGp.+d!G-1d. )
j =y, + sl kel (Ol (BN SO
. d'p.
f 4 i3
-1 2 -1
q!Gq. w'G w. p'Gp.+p.g'G g, v
i b e Mk i I §
“*f”:’#*(y‘.‘)"rrl' T
{ 33 J 3% JE S
(g.+a.p.) 'Glg +a.p, 1Gq.,
: e <q1 - it L q:)
j w.q. w'q, g
J JqJ )qJ

In the following five lemmas we will establish some properties of wj and the terms on the

right hand side of (3.6) which will enable us to prove the key result that the sequence (wj)

is bounded.

-6=
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Lemma 1

let N’ be positive definite. Then

! e ST -1
in  ffu |l < 5’\‘15 [l and HH‘ I} < wj”i:H <

let x,y ¢ E be such that y'x ¥ 0, Set v = y-Gx. Then (see [9)),
Y

x'Ux+ '\;_1 ; v'\:—lv
£3:7) ____.k.--—.—-—l 2 A mem——
v'x y'x

The first statement of the lemma follows immediately from this equality. By definition

: Sfd. A2 B0 7 o Mt S W
equal to the sum of the eilgenvalues of the two matrices G Hju and G H’ G
both matrices are positive definite we have

l/'.‘H y " ‘\/2"’.‘16'1,/2‘!

H\-’ll'u’\; < Vj and  |[G < ¢

This comples the proof of the lemma.

Lemma 2

Let N, be positive definite. For every 0O < A < 1 there are constants 1, > 2n

1
" * 0 such that, for every 3,
u«i %y and Hx,'-zH < \;
imply
(31.8) [[x“l-zf[ < \ﬁxﬁ-z(( "
Broot:
Because

Al
2 \
plGp.+0.alG q
e e s v
n‘;qil‘i i

it follows from (3.7) and Lemma 1 that

(3.0 ”‘\‘q‘-‘;p*”‘ . owi-.‘m and ”e‘” - l\(“Gi“\ :

«'Fu

v 18
]

since

and

el s

LT AR I
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Therefore, xj and xj*l are in U(z) for Yl and vf sufficiently small and we obtain

from Taylor's theorem the relation

3.10 . = Gs, = A IR
( ) QJ+1 = q) s] EJb]
where

1
E, = [ Glx,~ts )at - G
] 0 ] ]
and
(3.11) el < max )lox,.-ts,) - ¢
3 <<l SR

| A

max |[L(x, - t(x, - x, ) - z)]|
0<t<1 3 - e

(A

L max(”xj-zf[, ”ijl_z”}

Therefore,

oy, Il 9. s, s 1l
—Ji}_ < - + ——-2~—
i ”9)” e ” W & UQJJT‘-} ”E]” ”qJH
s, I ||sj||
™ ”qJ” ”03(}) = Gpj“ * ”E)“ ”gJ”
Since Taylor's theorem and Assumption 1 imply
(3.13) quﬁ = O(ij—zH) and ij-zH = O(qulh v

it follows from (3.9), (3.11) and (3.12) that ijﬂ—zl[ :X“xj-z“ for 1, and 1} suffi-

ciently small.

Lemma 3
Let Hj be positive definite. Then there are constants 2n < t S Toand 0 s R

such that, for every 3j,

wj < T, and ”xj-zH = 15

imply

“fu




1 H_ ., 1s well-defined and positive definite,
J -

PiGP.-0.9:G g

11) I ~ ¥ « 0l l._..’__“._L__.l - 2] + otllx.-zll) .

i \ .’q};} 3
Proof:
By (2.5) and (2.7), H y 1S well-defined and positive definite 1f :*l";‘ » 0 and Yy > 0.

14

Using (3.10) we obtain
d'p. = p'Gp. + pP'E.p.
YPq T RyRy T RSPy
Since by (3.8) and (3.11)
(3.14) e ]l = otllx.-z|])
Sps” )

this shows that d.jri >0 for = and 1* sufficiently small.

By (2.4)

(d'p.) " (d!q.)°
o 0 |

ot 1 ot Sty
P.9.P. A2 Y
) 1!1 7]1
Therefore 1t follows from (2.8) that
) ot
(d!q)” f. aip, (d'.q.)
(3.15) R R Lo ;
3 wiq.dlp. 1 2 D0, 2 wla.d.p
2 i 0 i s et 5 o (o i
By definition,
19ta.~g' . q. {gt aq. i Na.ll Nla.. I
(3.16) o |_.L_.}'._J‘_T.I_l - ol o ke e - S
) ) S5l 'lf:j” i ”51‘17 H<‘11|l
a4 | 9 P,-gi,,P. o legll ey,
(3.17) o o 3] @ LR o ] ¢ eed LT
P.9P q'.p [ = g.p. llasll
h il il 6 il Sfsy 3 bt
[t follows from part 11) of Lemma 1 that the sequences il:’wlq]% ‘ll‘\i;pw_‘. 1:?\11.': Hs’“" and
‘\,vd).: '\1"§"' are bounded. Because 51 + B8, # 0 we deduce, therefore, from (3.9), (3.12),

and (3.14) through (.17) that
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lla,, 2
(3.18) 1 - yi’ =0 —_ﬁi—iri— <
9
j

for T and T sufficiently small. Furthermore, using (3.18) and (3.12) we obtain

g 2
which by (3.7) and (3.14) implies the second part of the lemma.

Lemma 4
Let Hj be positive definite and 0 < t < 1. There are constants 2n < 1, < T,,

0 < r; < 1% and 61 > 0 such that, for every j,

LV

Y KT and |ij-zll <y

j 3 3
imply
Vs ' =1
p'Gp.+d G "d, | ||
1) o Wt ReliE: R 2 < 68 ||x,-z
d'p. -5
1Py i
(q.+a.p.) 'G(q.+a.p.)-q'Gq.
PRI Ll L R T
. ; X
j w!q. et Ik Jj
Sie
-1
qiGq. wiG w
1) (g - D) qu;l + ($> =
9/ E) j s iy
piGp, 40291 1g,
e EL e
s
pProof :

It follows from (3.10) that

d, = Gp, = B.p,
J p) 3‘1

which by (3.7) and (3.14) implies the first part of the lemma. In order to prove the second

part we observe that

=10~




»
(q“a)p)}'(;(q’.n\jp’) - q;\iqj - 2(]’["(’11 + a;[l;(;p

3 1

diq arq\’

SAS R e B i} F
A b L <d;p, Py k)

(d'q )2 1'q 1iq ’
SEE L VIR . L G B [ S { TN,
aip “dlp, P1M1Y T \d@p. ) PiFyPy
gl ¥y '

- U(Hti’H\

Because of (3.18) and (3.14) this equality implies the second part of the lemma for
1: sufficiently small. Finally we have
qlaq 1-y v'u-lw‘
(3.19) y-n Aede 13,
. .
) b ) b
w'(.-lw ql6q.-w'G 'w
o | e _‘.__.J. ¥ ._L.i.'.l.__,
Ty MYy 54
% Since
)q'_\:q. - w',«:“w.! = 0(“\1 - \:q.ll) 4
2| 1 ] ] 3 1
the last part of the lemma follows from (3.19), (3.7) and Lemmas 1 and 3.
Lemma 5
There are constants 1 > 2n and (* - 0 such that
wn < 1 and ||xo—z|' < Te
imply
1) Hj 1s well-defined and positive definite for Y= 0T
11) *5 % Ty for j = 0,1,2

& -
1 kY ) l[xj-zll < w
¢ 120
; ]
b Proof.
g

Choose \ = 0.5 in Lemma 2 and let 1 and 1* be such that

=11«

‘g

.
3

TR Y

and

o
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(3.20) T+ 6611 5_13 and T* < -

We will show by induction that then for every 3j the following statements hold.

(3.21) Hj+1 is well-defined and positive definite for i = 0,...,j
(3.22) leiﬂ-zH < O.SHXi-z“, 3= 00
]
(3.23) Vi SV * 36 ‘Z ”xi-z” vl
i=0
Iet j = 0. Since (3.20) implies Tt < el iy and T* < r; Saugs 3 it follows
from Lemma 3 and the definition of HO that H1 is positive definite. Furthermore, Lemma 2

gives the inequality (3.22) and Lemma 4 in conjunction with (3.6) implies the relation (3.23).
Now assume that (3.21) through (3.23) are satisfied for some 3 - 1 > G. Since (3.22) and

(3.23) give the ineqgualities.

ij-z|| < "xo—zll <t and Y, <1

2 j 2

it follows from Lemma 3 that Hj+1 is positive definite. Moreover, Lemma 2 implies

“xj+1-lH s Q-SH‘XJ.‘ZH 9

Using Lemma 4 and (3.6) we obtain

A

LRI AL E)

-1
Vo *+ 36, iZo llx;-zl| + 361ij—zH

A

b .
5_wo + 361 iZo (0.5)1“x0-zﬂ

A

wo + séluxo-zn <T

3

Since (3.23) implies that the sum

oo

D ezl

j=0

is finite the proof of the lemma is complete.

=] 2




Using the above results we can now prove that the sequence (“1) gencrated by the
algorithm converges locally and superlinearly to z.
Theorem

Let Assumption 1 be satisfied. For every choice of “1 and HZ with ﬂl + B? ¥ 0,

there are numbers
. 6‘
5(81 82) and (RI'BZ)
such that the inequalities

IIH(,-G'IH < 8(BL.By) and lx -zl < 8e(8,,8,)

imply that the sequences (xj) and (“j’ in the algorithm are well-defined and have the

following properties,

i) Hj is positive definite for all j.
ii) Either xj = 2z for some j or

Iy, -2l -
o Rk

ALY
)] -n—li%;n— is finite
=0 \ 1%y

1N1) and IH;‘) are bounded.

Proof ;

[t follows immediately from Assumption 1 that there is some neighborhood Uo(z) coU(ez) l
such that x ¢ Uu(z) and x # z  imply VF(x) # 0. Choose 6'(61,31) < 1* such that ‘
i |

[lx-2|| < 8%(8y+8,) implies x ¢ U (2). Furthermore choose §(8,,8)) such that
-1 &
”"0‘“ | < §(8).8,) mplies < 1

By (3.7) a 6(ﬂl,ﬂ2) with this property exists for every 1 > 2n.

With ﬁ(ﬁl.ﬁz) and G'(Bl,ﬂq) choosen in this way we deduce from Lemma 2 and Lemma 5 that

DN ————

n‘ is well-defined and positive definite and x1 ¢ Un(z) for every j. Therefore, it follows

13-
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from Step 1 of the alagorithm that (xj‘ 18 well-defined. Furthermore q) = 0 if and only if

X. =B
|}

Let lx)‘ be an 1nfinite sequence. By lLemma | and Lemma 5, the sequences (Hj\ and

lH;I) are bounded,

With 0 < t <« 1 we deduce from (3.6) and Lemma 4 that, for every J,

I piGp *nzq‘cq.
3.24) < 18 = ¥ e > s I e
( Voo 5 ¥y ¢ 38 Mlxg z|| + (t-1) 590

Since by Lemma 1, ¥. > 2n it follows from (3.24) and part iii) of Lemma 5 that

b
ol 2 ,.~1
E (p Gp ﬁo’q G qI ) :
y=0 0194Py :

(3.25) 5 llesg-ap,ll? <= .
L

which by (3.7) implies that

Using (3.12), (3.25), (3.14) and part iii) of Lemma 5 we obtain

2
"’ llqj,lll) =N
s=0 \ N9l

In view of (3.13) this inequality completes the proof of the theorem.

-14-
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